Mycoplasma and Eye Disease

In 2014 there were eight million diagnosed cases of age-related macular degeneration in the United States. As of 2016, there were eleven million. This means one out of thirty Americans has macular degeneration. In the 1960’s, 70’s, 80’s, and even in the 90’s, the “condition” known as macular degeneration was unheard of. What is going on? Is it lifestyle? Is it because people are living longer? Or is there another explanation? Could it be that eye diseases are infections? The following are some clues (and proof):

ANGIOGENESIS

Without oxygen the cell’s mitochondria cannot get rid of “waste” and make energy, because oxygen binds with hydrogen and carbon (H2O and CO2) and the excess is eliminated through the urinary track and the lungs. Under normal circumstances when blood vessels are damaged as in the case of an injury, the cells around that damaged blood vessel become deprived of oxygen. The cells then release VEGF (vascular endothelial growth factor) which signal the vascular endothelial cells to “sprout” new blood vessels. (Remember, without oxygen the cell cannot function, produce energy and is shut down.) Once new blood vessels deliver oxygen to the cells, the cells function again and release “inhibitors” to stop the growth of new blood vessels.
In a mycoplasma infection (tumors, for example), mycoplasmas invade a cell and first attack the mitochondria’s membrane, disabling the mitochondria (cell battery). (Note: Mycoplasmas absolutely need fat to replicate and the mitochondria’s membrane is made of fat.) Without the mitochondria, the cell can no longer produce energy and the cell stops pulling in oxygen and becomes “anaerobic”. As mentioned in the previous paragraph, the now oxygen-deprived cell releases VEGF and new blood vessels are formed. However, since the cell is still no longer functioning, the blood vessels are now “feeding” essential minerals and nutrients to the mycoplasmas.

In the case of macular degeneration, newly formed tiny blood vessels (angiogenesis) in the eye rupture. This results in scar tissue, eventually causing vision impairment or even blindness. To combat macular degeneration, eye doctors inject a VEGF inhibitor directly into the eyeball to stop the formation of new blood vessels (angiogenesis). These shots are very expensive. The wholesale cost for just one vial is over $600. This means treating macular degeneration is big business for the pharmaceutical and medical industry. Does this mean macular degeneration is an eye infection? The following is the proof, but first, some information about mycoplasma, the most common cause of cancer and disease.

MYCOPLASMA

Mycoplasma is the tiniest living organism, even smaller than a virus. It is a cell-wall deficient bacterium. It is the genetic material of a bacterium encased in a double membrane (endotoxin). It needs a host to survive and replicate.

Mycoplasmas thrive in an acidic and anaerobic environment. Most importantly, it needs fat and thrives on sugar. There are over 100 types of mycoplasmas, some attacking plants and some attacking animals. Mycoplasmas can attack any cell in the body, i.e., blood, organs, joints muscle, etc. It
also causes hormonal imbalance by invading the endocrine system, where it uptakes cholesterol, blocking the production of hormones. Mycoplasma attack degenerative weak cells and then spread to other parts of the body (metastasize). Mycoplasma infections are spread through the sharing of body fluid (sex and kissing) with an infected person. Mycoplasmicar can be airborne, such as in recycled air on an airplane. Mycoplasmac lie dormant in a degenerative cell until awakened by a “trauma.” Trauma or extreme stress are a “jolt” to the body and causes the body to suddenly become acidic. Mycoplasmas monitor the immune system, the oxygen level and the body’s pH. They will awaken when the environment is in their favor.

PROOF -- MYCOPLASMA CAUSES MACULAR DEGENERATION

Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid (βA) plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases (Source: Wikipedia)

MILD SILVER PROTEIN

Silver has been used for thousands of years as a natural antibiotic against bacteria. Upon contact it kills bacteria (mycoplasma and Lyme for example) and fungus. Ancient historic records reveal people drank out of silver chalices. People put silver in their wells and drinking water.

Mild silver protein (MSP) was invented in the 1890’s. It is suspended in a matrix of protein which stabilizes it. MSP is registered with the FDA but is not considered a drug because silver is an element. What made the mild silver protein IV that I received so potent? It was a whopping 20,000 parts per million (ppm). Most over-the-counter silver is around 10-100 ppm.

THE EXPERIMENT
In October of 2015, I could no longer drive because of macular degeneration. In January of 2017, I asked myself, “What if I put both MSP in my eyes? Would that stop the macular degeneration?” That same month (January 2016) I started putting a combination of flaxseed oil (anti-microbial) and MSP in my eyes two times a day.

Then in mid-February 2017 I went to the eye doctor and the standard procedure was pictures of my eye (internal), the doctor looking into my eyes, and a vision test. (This was the same doctor who told me in 2015 I could no longer drive.) Amazingly, there was no sign of macular degeneration! My eyes were stable. Even more amazing, my vision had improved enough to where I could legally drive again!